
BVTKNodes Documentation
Release 0.5

Silvano Imboden, Lorenzo Celli, Paul McManus, Tuomo Keskitalo

Sep 18, 2021





Contents:

1 BVTKNodes Addon for Blender 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Target Use and Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Technical Details and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Available Versions of BVTKNodes addon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Installation of VTK for Blender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.7 Removal and Upgrading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.8 Workspace Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.9 Simple Example: Human Head Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.10 Node Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.11 Tabs in BVTK Node Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.12 VTK Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.13 Addition of Custom Code to VTK Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.14 Customized VTK Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.15 Special Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.16 Python Interaction and Custom Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.17 Customization of Node Python Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.18 Information and Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.19 Debug Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.20 Other Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.21 Help with Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.22 Special Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Node Examples for Unstructured Grids 17
2.1 Set Up Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Extract Boundary Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Field Data Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Cutting Field Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Vector Glyphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 Iso-surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8 Stream Tracers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.9 OpenVDB Export and Volumetric Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Development 35
3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

i



3.2 BVTK Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Testing Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 What’s New 39
4.1 Version 0.7 (2021-09-18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Previous versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ii



CHAPTER 1

BVTKNodes Addon for Blender

1.1 Introduction

The Visualization Toolkit (VTK) is an open source library for scientific data processing and visualization. BVTKN-
odes is an addon for Blender (an open source 3D content creation and visualization tool). This addon makes it possible
to create and execute VTK pipelines configured in Blender Node Editor, to produce objects like surface meshes, which
can be then modified and visualized in Blender.

BVTKNodes provides Blender users with access to data readers for many scientific data formats, along with capability
to convert VTK data into Blender objects. For VTK users, the add-on provides access to high quality photorealistic
rendering and many kinds of mesh editing tools. The add-on was first presented at Blender Conference 2018. You can
see more examples in a gallery thread on blenderartists.

1

https://www.vtk.org/
https://www.blender.org/
https://www.youtube.com/watch?v=KcF4LBTTyvk
https://blenderartists.org/t/bvtknodes-gallery/1161079


BVTKNodes Documentation, Release 0.5

1.2 Target Use and Users

BVTKNodes integrates VTK’s data processing capabilities with Blender’s powerful visualization features. It allows
creation of photorealistic images and animations from scientific data.

Use of BVTKNodes requires both Blender and VTK skills. User needs to know at least Blender 3D Viewport, Node
Editor, Materials, Lighting and Rendering basics, as well as VTK (to the extent required by users’ specific case). If
photorealistic rendering or specialized VTK pipelines are not required, then it is suggested to use Paraview instead.

To learn Blender, see resources at blender.org , Blender 2.8 fundamentals series in Youtube and search for Blender tu-
torials on a topic. To learn VTK, see VTK wiki, the VTK Textbook and view VTK discourse forum. For BVTKNodes,
see Help with Issues.

1.3 Technical Details and Limitations

BVTKNodes is based on automatic generation of Blender Node classes from VTK Python classes. Simply put, the
addon makes VTK classes available as nodes in Blender. A manually programmed node class can supercede auto-

2 Chapter 1. BVTKNodes Addon for Blender

https://www.paraview.org/
https://www.blender.org/
https://www.youtube.com/playlist?list=PLa1F2ddGya_-UvuAqHAksYnB0qL9yWDO6
https://vtk.org/Wiki/VTK/Learning_VTK
https://vtk.org/vtk-textbook/
https://discourse.vtk.org/


BVTKNodes Documentation, Release 0.5

matically generated code where needed. It is fairly easy to upgrade/downgrade to another VTK version, including
customized VTK builds, so this makes BVTKNodes an option for prototyping and testing of VTK pipelines.

BVTKNodes includes many custom made nodes that make it possible to access VTK time step data, multi block data,
and to color surfaces according to a customizable color ramp. For nodes which have not yet been fully customized
for use in Blender, it is possible to add Custom Code for VTK objects. This is often needed, since many VTK objects
require custom input from user to work correctly.

When update of the node tree is triggered, each parameter and value shown in the node is set to the VTK object
represented by the node, unless the value is empty. It is not possible to affect the order in which values are set, which
may result in unwanted behavior. In this case, please see Addition of Custom Code to VTK Nodes. Custom code is
always run at last.

Warning: BVTKNodes is a bleeding edge software. Because both Blender and VTK are constantly evolving
pieces of software, it is expected that customized parts in BVTKNodes can break when versions change. Many
parts of the addon would benefit from further development. Addon is prone to crashing, and results should always
be reviewed critically for bugs. There is no guarantee: you use the addon at your own risk.

1.4 Available Versions of BVTKNodes addon

1.4.1 1. simboden/bvtknodes

Original version of BVTKNodes for Blender version 2.79 using VTK 8.0.1. This version was demonstrated in the
Blender Conference 2018 presentation.

1.4.2 2. tkeskita/bvtknodes

Upgraded and developed version for Blender 2.83 LTS series using VTK 9.0.1. Uses a new update system and a new
mesh generator node VTK To Blender Mesh instead of the legacy VKT To Blender node.

Note: This documentation corresponds to tkeskita/bvtknodes version.

1.4.3 3. esowc/sci_vis

A version with new features for Blender 2.79b using VTK 8.2.0. Old Blender version is used for stability and animation
features that are not yet working correctly in Blender 2.80 or newer.

1.5 Installation of VTK for Blender

BVTKNodes requires VTK to be available as a module in Blender’s Python environment. It is suggested to install
VTK into Blender Python via Pip.

Note: Optional, for experts: Another VTK version (7 or later) may be alternatively used, but this requires compi-
lation of VTK. Details are beyond this document, but to summarize briefly: If another version is used, then generated

1.4. Available Versions of BVTKNodes addon 3

https://en.wikipedia.org/wiki/Bleeding_edge_technology
https://www.youtube.com/watch?v=KcF4LBTTyvk
https://github.com/tkeskita/BVtkNodes
https://developer.blender.org/T66392
https://developer.blender.org/T66392
https://github.com/tkeskita/BVtkNodes/blob/master/pip_install_vtk.md
https://github.com/tkeskita/BVtkNodes/blob/master/pip_install_vtk.md


BVTKNodes Documentation, Release 0.5

class definitions (gen_VTK*.py files) should also be updated (by running populate_db.py and generate.py. Warning:
Modifications may be required). If you want to compile custom VTK, please see VTK building instructions for Linux.

1.6 Installation

• Install Blender (if needed, see instructions).

• Install VTK to Blender Python as instructed above in Installation of VTK for Blender.

• Download appropriate BVTKNodes add-on ZIP file (see options in Available Versions of BVTKNodes addon).
To download add-on from Github, Select “Code”, then “Download ZIP”.

• Start Blender, go to “Edit” –> “Preferences” –> “Add-ons” –> “Install” –> open the add-on zip file.

• Activate the “BVTKNodes” add-on in Preferences by clicking on the checkbox. Add-on is located in Node
category, “Community” level of Blender add-ons.

• For Blender 2.79: User Settings are located in File menu, and it is suggested to Save User Settings before
closing settings.

1.7 Removal and Upgrading

Before installation of an updated version of BVTKNodes add-on, you should first remove the old version:

• Go to “Edit” –> “Preferences” –> “Add-ons” –> “BVTKNodes” -> Remove

• Close Blender and open again. Make sure BVTKNodes is not listed in the list of available add-ons.

• Follow Installation Instructions above.

1.8 Workspace Setup

BVTKNodes is used via BVTK Node Editor in Blender. These instructions help you set up a default workspace in
Blender for BVTK (nodes), to make work easy.

• Start a new file in Blender (File –> New –> General).

• Delete default Cube object.

• Duplicate the Layout Workspace (right-click –> Duplicate) and rename the new workspace (double-click on the
name) to BVTK.

• Split the 3D Viewport horizontally, and then vertically to create 3 window areas.

• Change top area from top left corner into BVTK Node Tree. If you don’t have this option available, then there is
something wrong in the installation.

4 Chapter 1. BVTKNodes Addon for Blender

https://github.com/tkeskita/BVtkNodes/blob/master/build_vtk.md
https://docs.blender.org/manual/en/latest/getting_started/installing/index.html


BVTKNodes Documentation, Release 0.5

• In BVTK Node Editor, click New to add a new node tree.

• Change one of the smaller areas into Text Editor.

• In Text Editor, click on New and rename Text into BVTK.

• Save this setup as a Blender file so that you can use it as a template when starting to process a new case.

1.9 Simple Example: Human Head Visualization

Here are the steps to create the meshes for the example shown in Introduction. For other examples, see Tree tab below.

• The data file head.vti is located in examples_data folder in the sources. You can also download head.vti from
github.

• Create node setup as shown in the image in Introduction. You can add nodes from Add menu or by shortcut key
shift + A. Link nodes by dragging from a connector to another connector.

• Set FileName in vtkXMLImageDataReader node by clicking on the folder icon and select head.vti file.

• In vtkContourFilter node click plus icon to add a contour value, then set the value.

• In VTK To Blender Mesh node, add name to mesh object, set Generate Material on, and run Update. A mesh
object should now appear in the 3D viewport. Repeat this for the other VTK To Blender Mesh Node.

• At this point, BVTKNodes should have created two (overlapping) mesh objects, which are shown in the Blender
Properties Editor.

• Save Blender file.

In practice this is the end of the BVTKNodes part. The rest of the visualization includes steps in Blender: moving
of objects, creation of background plane object for visualization, setting up camera, setting up lighting and world
backround, modification of materials for objects, modify settings for rendering engine, rendering of image, possibly

1.9. Simple Example: Human Head Visualization 5

https://github.com/tkeskita/BVtkNodes/blob/master/examples_data/head.vti
https://github.com/tkeskita/BVtkNodes/blob/master/examples_data/head.vti


BVTKNodes Documentation, Release 0.5

Fig. 1: Example setup for BVTK workspace.

composition and finally saving of image file. To learn about those, it is suggested to search for Blender tutorials
on-line.

1.10 Node Status

The tkeskita/bvtknodes version of BVTKNodes includes a modified core update system for nodes, which fully sepa-
rates node editing in Blender from updates on the VTK Object level, to allow control over updates. Each BVTK Node
has a Node Status, which is indicated by the color of the node background, to show the current status. Main node
statuses include

• Out-of-date (green) - Node and VTK level are not in sync. VTK Object might not yet even exist.

• Updating (blue) - VTK level is currently being updated to match current node properties.

• Up-to-date (dark gray)- Node and VTK level are in sync. VTK Object exists in memory.

• Upstream-changed (orange) - Some value in an upstream node has been changed. Node and VTK level may
not be in sync, and update is needed.

• Error (red) - Setting a value from node to VTK Object, or running of a VTK command, has failed. Execution
has been stopped.

Using these statuses, it is possible to build different VTK level updating systems, without binding node editing opera-
tions with updates (see Update Mode in Inspect Panel).

6 Chapter 1. BVTKNodes Addon for Blender

https://github.com/tkeskita/BVtkNodes


BVTKNodes Documentation, Release 0.5

1.11 Tabs in BVTK Node Editor

Tabs are located in the Sidebar of the BVTK Node Editor. You can hide and view the Sidebar by pressing “N” key
while hovering mouse over the BVTK Node Editor. Note: Some tabs become visible only after you select a VTK node
in the node tree. The properties and operations shown in tabs will affect the active node.

1.11.1 Item, Tool and View Tabs

These tabs are just default Blender tabs, which show node properties, node tools and view.

1.11.2 Properties

• Show/Hide Properties shows list of VTK object boolean properties, which can be hidden or shown in the node
based on this setting. Values for hidden properties are ignored (not set to VTK objects during updates).

• Edit Custom Code operator copies node’s custom code into BVTK Text Block in Text Editor, where it is
possible to add and edit Python code. The code will be run, line by line, for the VTK object represented by this
node when the node is updated.

• Save Custom Code operator saves the text from the BVTK Text Block into custom code storage string of the
active node. Custom Code will be shown in the node (editor screen updates when mouse cursor enters it) if there
is any saved to it.

1.11.3 Inspect

This tab contains global settings, tools for debugging and information.

• Inspect tab shows the VTK version at the top.

• Update Mode is a global setting which determines when changes made in node properties are updated to the
corresponding VTK Object and output.

– No Automatic Updates will trigger no updates. Downstream nodes are only informed that a change was
made (status changes to Upstream changed).

– Update Current Automatically will only update current node and upstream nodes, if they are out-of-date.

– Update All Automatically will update upstream nodes (if needed), the current node and downstream
nodes automatically.

• Update Node operator will call a node specific update routine on the active node. The update routine initializes
a VTK object (if no VTK Object exists), sets properties from node to the VTK Object and runs VTK level
update command(s). This operator is available also on nodes, but only if the node status is not Up-to-date.

• Documentation will show doc string of the VTK object in the BVTK Text Block in the Text Editor.

• Node Status will show status of the VTK object in the BVTK Text Block in the Text Editor.

• Output Status will show status of the VTK object in the BVTK Text Block in the Text Editor.

• Online Documentation will open up web browser showing the Doxygen generated documentation for the very
latest nightly version of VTK. Warning: Documentation may not exactly match the version of VTK used in
BVTKNodes!

1.11. Tabs in BVTK Node Editor 7



BVTKNodes Documentation, Release 0.5

1.11.4 Favorites

This tab lists favorite nodes. You can delete and add nodes for easy access here.

1.11.5 Tree

Node tree related operations.

• Export JSON exports the current node tree as JSON file.

• Import JSON imports the current node tree as JSON file.

• Arrange will try to arrange node tree for a clean view. Warning: Does not work well for complex node trees.

• Examples contains a selection of example node trees you can try out.

1.12 VTK Nodes

All node names that start with lower case text ‘vtk’ using camel case naming convention represent the VTK classes
directly, for example vtkArrowSource. All other nodes are special nodes for BVTKNodes.

Some VTK classes include several overlapping methods to specify values, e.g. vtkConeSource has options for Angle,
Height and Radius, two of which is enough to specify (third property can be hidden in Properties tab to disable it). If
all are specified, then the latter values take precedence. You can hide unwanted properties (see Properties tab). Hidden
properties are ignored during updates.

Note: Some VTK operations require use of vtkPassArrays, vtkAssignAttribute or a node specific function to activate
arrays to operate on to get correct result, even if there is only one array in input. See examples in Node Examples for
Unstructured Grids.

1.13 Addition of Custom Code to VTK Nodes

Many VTK nodes require special input from the user, depending on the node, to work correctly. For any VTK node, it
is possible to add a Custom Code block for special input commands. Each line of code must be a command that can be
run directly for the VTK object (e.g. set a value or call an object method). You can select a VTK node, and then use
Online Documentation operator in Inspect Tab to find out about VTK specific commands and values. Lines starting
with # are ignored as comment lines. Custom Code is run after the settings shown on the node have been set to the
VTK object, so it is possible to overwrite settings with Custom Code.

Editing of Custom Code is done using Blender Text Editor:

• Select a VTK node in BVTK Node Tree

• In Properties Tab, run Edit Custom Code.

• Go to Blender Text Editor, and add/edit code in BVTK text block.

• To save edited text to active node, run Save Custom Code in Properties Tab. Updated code is shown on the node
bottom when mouse cursor enters BVTK Node Tree area (see bottom example in Extract Boundary Surfaces,
vtkOpenFoamReader node)

You can find Edit and Save buttons also directly on the node if the node is up-to-date: Click on the eye icon on the
node bottom right part to see the custom code and the operator buttons.

8 Chapter 1. BVTKNodes Addon for Blender

https://en.wikipedia.org/wiki/Camel_case
https://vtk.org/doc/nightly/html/classes.html


BVTKNodes Documentation, Release 0.5

1.14 Customized VTK Nodes

Various VTK nodes have been customized to ease use in Blender (see Customization of Node Python Code):

1.14.1 vtkPlane

This node specifies an infinite plane suitable for e.g. slicing 3D VTK cell data (see example Cutting Field Data).
Plane can be specified by manual input of Normal and Origin vectors, or by selecting an existing Blender Object
(must be either a Plane or an Empty Blender Object type) from the Orientation Object dropdown menu. The location
and rotation of the named Blender Object is used to calculate Normal and Origin for vtkPlane.

1.15 Special Nodes

1.15.1 VTK To Blender

This is the original main node, which converts VTK surface mesh data into a Blender mesh. This node has been
superceded by the VTK To Blender Mesh node in the tkeskita/bvtknodes version.

VTK To Blender creates faces directly out of VTK cell vertex lists, without any pre-processing. This works well when
VTK data consists of simple cells with ordered vertices as input, such as e.g. trigonal or quadrigonal boundary faces
generated with vtkGeometryFilter. Direct conversion of 3D cells or polygons does not work correctly.

• Name specifies the object and mesh names for the Blender object which will be created. Note: Any pre-existing
mesh will be deleted upon update.

• Auto update: If enabled, the node tree will be updated immediately whenever a value in a node is changed. If
not enabled, the user must run Update operator manually to update Blender object and mesh after changes.

• Smooth will set surface normal smoothing on for the mesh if enabled. Note: You may need to visit Edit Mode
for the object in order to show correct shading in the 3D Viewport after running Update with Smooth option
enabled.

• Generate Material will generate an white diffuse default material and assign it to this object. Warning: Any
existing material is overwritten if enabled.

• Update executes the node pipeline connected to this node.

1.15.2 VTK To Blender Mesh

This is the new main node for exporting vertices, edges and boundary faces directly from VTK objects into a Blender
mesh object, without need for any additional pre-processing nodes. Conversion is carried out for all linear VTK cell
types as well as polyhedrons. The node contains same basic options as VTK To Blender node with following additions:

• Recalculate Normals: This option will automatically compute and set “outward” normals for faces, regardless
of original face normal directions.

• Create All Verts: If disabled, only boundary vertices (vertices part of boundary faces and edges) are created. If
enabled, all vertices (including internal and unconnected vertices) are exported.

• Create Edges: If enabled, exports also wires (edges that are not part of any face).

• Create Faces: If enabled, creates boundary faces (faces used by only one VTK cell). Internal faces (faces shared
by two 3D cells) are not exported.

1.14. Customized VTK Nodes 9

https://github.com/tkeskita/BVtkNodes
https://lorensen.github.io/VTKExamples/site/VTKFileFormats/
https://lorensen.github.io/VTKExamples/site/VTKFileFormats/
https://vtk.org/Wiki/VTK/Polyhedron_Support


BVTKNodes Documentation, Release 0.5

1.15.3 VTK To Blender Particles

Warning: This node is experimental! There is an issue with rendering where render does not show particles and
rendering hangs.

This node converts VTK point data (points of vtkPolyData) into a Blender Particle System. It allows use of Blender
particle object instancing, which allows glyphing of point data (presentation of points with a mesh object). Since
object instancing uses little memory, a large number of points can be visualized efficiently.

• Name is the name of the particle object to be created.

• Glyph Name is the name of the glyph object which is to be instanced at point locations. For oriented glyphs,
the glyph should be 1 m in length, and point towards positive X axis. Note: Node will not work correclty unless
a glyph object is specified.

• Direction Vector Array Name (optional): Name of a VTK vector data array, with which the glyph object will
be aligned at point locations.

• Scale Value or Name (optional): A constant multiplier value or name of a VTK scalar array used to scale the
glyph object at point locations.

• Color Value Array Name (optional): Name of a VTK scalar array of ramp values that will be used for coloring

10 Chapter 1. BVTKNodes Addon for Blender

https://github.com/tkeskita/BVtkNodes/issues/12
https://github.com/tkeskita/BVtkNodes/issues/12


BVTKNodes Documentation, Release 0.5

the object at point locations. Color ramp values are available via Particle Info node’s lifetime output (until a
better access becomes possible).

• Particle Count specifies the maximum number of particles which will be converted into the Particle System.

• Generate Material will generate a default colored diffuse material which will be used for glyph object at
particle locations.

• Initialize operator will initialize the Blender Particle System with the number of particles specified in Particle
Count. This operator must be run before node pipeline is updated.

• Update executes the node pipeline connected to this node.

Usage: First, create a glyph object. Then input the data in node fields, and run Initialize. After that, every change of
frame number in Blender Timeline updates the particle data. Note:

• Change of frame number in Blender Timeline is required to update particle data correctly.

• Particles may not show up updated in the 3D Viewport after frame change, but they should be still rendered
correctly.

• Particle colors show up correctly only in Rendered Viewport Shading mode, and only using Cycles Render
Engine.

• It is not possible to modify particles in Blender. You need to do all modifications on VTK side prior to using
this node.

1.15.4 VTK To Blender Volume

This node is currently obsoleted, since it requires custom build of Blender dependency libraries to enable pyopenvdb
in Blender, in order to convert 3D VTK image data (vtkImageData) into OpenVDB grids. Instead, please use the VTK
To OpenVDB Exporter node described next. If pyopenvdb becomes a standard part of Blender one day, this node can
be resurrected.

1.15.5 VTK To OpenVDB Exporter

This node exports selected 3D vtkImageData arrays (density, color, flame and temperature inputs) into a JSON file,
which can be then converted into OpenVDB (.vdb) file format using an external installation of pyopenvdb. OpenVDB
files can be then imported back to Blender as a Volume Object for volumetric rendering, using e.g. the Principled
Volume Shader.

• Name is the base name of the OpenVDB file to be created.

• Density Field Name specifies the field name of scalar array to be used for the Density output of Volume Info
node in Blender Shader Editor.

• Color Field Name is used for 3D vector array as Color output in Volume Info node.

• Flame Field Name is scalar field exposed as Flame output in Volume Info node. It can be used for specifying
e.g. emission strength.

• Temperature Field Name is a scalar field shown as Temperature output in Volume Info node.

Upon running Update Node, the node creates a file like volume_00001.json (format is name + frame number)
into the folder where the blender file is saved. If node input is not a data suitable for exporting (VTK 3D Image Data
or Structured Points Data), the node shows an error message, otherwise data dimensions are shown.

To convert JSON file to OpenVDB, the user must run a Python script convert_to_vdb.py located in the add-on
source directory utils. You can also download script directly from github. Example usage of command:

1.15. Special Nodes 11

https://docs.blender.org/manual/en/latest/render/shader_nodes/input/particle_info.html
https://devtalk.blender.org/t/build-pyopenvdb-as-part-of-make-deps/14148
https://raw.githubusercontent.com/tkeskita/BVtkNodes/master/utils/convert_to_vdb.py


BVTKNodes Documentation, Release 0.5

python3 convert_to_vdb.py volume_00001.json

Note:

If you receive error like: “libjemalloc.so.2: cannot allocate memory in static TLS block”

then prepend command with LD_PRELOAD with correct path to libjemalloc.so.2, e.g.: LD_PRELOAD=/
usr/lib/x86_64-linux-gnu/libjemalloc.so.2 python3 convert_to_vdb.py
volume_00001.json

Running convert_to_vdb.py requires that pyopenvdb module is available to Python. pyopenvdb can be provided exter-
nally, depending on your system:

• Ubuntu Linux : install system package: sudo apt-get install python3-openvdb

• Windows: ???

If you find out free packages that provide pyopenvdb, please comment here.

See also other alternative routes from VTK to OpenVDB.

Hint: Add Math or Vector Math nodes in the Shader Editor to modify array values to obtain wanted visual results,
instead of adding the mathematical manipulation of the arrays in BVTKNodes. See OpenVDB Export and Volumetric
Rendering example.

1.15.6 VTKImageData Object Source

This node creates an empty 3D VTK image data (vtkImageData) object.

• Origin is the origin coordinates of the image data.

• Dimensions set the number of voxels in each primary axis.

• Spacing specify voxel side lengths in the three axes.

• Multiplier scales both all Dimensions and all Spacing values while (approximately) retaining image bounding
box size.

1.15.7 Info

Info node shows information about the VTK pipeline, and is useful for VTK debugging purposes. It is best to try to
use this node whenever uncertain of what the current VTK pipeline contains. Currently it shows:

• Type of VTK data.

• Number of points and cells in VTK data. Note: “cell” in VTK terminology can refer to a face or a 3D cell.

• X, Y and Z coordinate ranges of the data.

• Point and cell data (with names, type and value ranges) included in the pipeline.

1.15.8 Color Mapper

This node assigns color to mesh data. You will see the colors in Blender 3D Viewport when Shading Mode is set to
either Material Preview or Rendered.

• input connector is connected to an input node.

12 Chapter 1. BVTKNodes Addon for Blender

https://github.com/tkeskita/BVtkNodes/issues/25
https://discourse.vtk.org/t/vtk-to-openvdb-file-format/6322


BVTKNodes Documentation, Release 0.5

• lookuptable connector must be connected to a Color Ramp node, which specifies the colors for the value range.

• Generate Scalar Bar will generate a color legend object to the Blender scene. Warning: This feature is not
working currently well. Alternative for this is to prepare a separate color legend image in an image manipulation
program and composite that on top of the result images.

• Color By is a text field which specifies the data array for which coloring is carried out. The first character
determines the array type (“C” for cell/face values, or “P” for point values), and the characters starting from third
position specify the array name. Second character is not used. For example, “P_pressure” specifies coloring by
point data in “pressure” array. If preceding nodes are up-to-date, the dropdown menu on the right will provide a
list for selection.

• Auto Range will update the value range for the data array specified in Color By automatically during update, if
enabled.

• min and max specify the value range (if Auto Range is disabled).

• output connector should be attached to a VTK To Blender Mesh node.

1.15.9 Multi Block Leaf

This node allows you to filter to a single data set, when the input is of type vtkMultiBlockDataSet. This is often
required prior to processing of a specific array data when a VTK Reader provides multi block data. Block Name text
field specifies the data set name. If preceding nodes are up-to-date, the dropdown menu on the right will provide a list
for selection.

1.15.10 Time Selector

This node can be connected immediately after a VTK reader node to control which time point of transient (time
dependent) data is to be processed.

• If Use Scene Time is enabled, time is directly controlled via the Blender Timeline Editor. If the frame in the
Blender Timeline Editor is changed, then Time Index in the Time Selector node is automatically updated to
correspond that frame number.

• If Use Scene Time time is disabled, then it is possible to use Global Time Keeper node to animate the Time
Index value (see below).

• If the VTK Reader is not aware of time data, and if File Name of the Reader node contains integers at the end of
the File Name, then the integer part of the File Name is updated to correspond to Timeline frame number. This
allows animation of time series data for readers that are not aware of time (e.g. vtkPolyDataReader, which can
read point and surface data from .vtk files).

1.15.11 Global Time Keeper

The Global Time Keeper node is a special node that allows animation of values in BVTK Nodes using the Blender
animation system using keyframes. This is done by reimplementing the keyframe functionality, which is not available
in custom node trees currently. Keyframe handling in BVTK is similar to the rest of Blender, i.e. keyframes can be
inserted on properties by pressing I on your keyboard when hovering over a property that is animatable. Alternatively,
you can right-click and use Insert Keyframe, or Clear Keyframes to edit the keyframes. For more information, please
read the official Blender documentation on keyframes.

In order for BVTKNodes to actually update the values of the keyframed properties, the Global Time Keeper node must
be inserted into the node tree. Running Update Node after a frame change will update all keyframed property values.
The node also shows all properties in the node tree that currently have keyframes along with the keyframe values.

1.15. Special Nodes 13

https://github.com/tkeskita/BVtkNodes/issues/3
https://github.com/tkeskita/BVtkNodes/issues/3
https://docs.blender.org/manual/en/latest/animation/keyframes/index.html


BVTKNodes Documentation, Release 0.5

Note: Since this implementation is an unofficial reimplementation of the animation feature, it does not support all
features:

• The keyframes are not accessible over the Dope Sheet or Graph Editor

• Interpolation mode is always set to linear for all properties

1.16 Python Interaction and Custom Filter

It is possible to interact with nodes and live VTK objects via Blender’s Python Console. Python Console includes
three help operators for BVTKNodes:

• Get Node operator inserts text which returns access to active node.

• Get VTK Object inserts command which returns access to VTK object of the active node.

• Get Node Output inserts text which returns the Output of VTK object.

Additionally, there is a Custom Filter node available, which allows user to write all of the Python code in a Blender
Text Block, which is run at node location. For example, this code returns first block from the input, similar to Multi
Block Leaf node:

def get_first_block(input):
return input.GetProducer().GetOutput(0).GetBlock(0)

Here is another example of a Custom Filter which calls vtkThreshold with custom parameter values:

def myThreshold(input):
vtkobj = vtk.vtkThreshold()
vtkobj.SetInputData(input)
attr_name = "p" # Array name for thresholding
attr_type = vtk.vtkDataObject.FIELD_ASSOCIATION_CELLS
value1 = float("0.01") # min value
value2 = float("0.02") # max value
vtkobj.ThresholdBetween(value1, value2)
vtkobj.SetInputArrayToProcess(0, 0, 0, attr_type, attr_name)
vtkobj.Update()
return vtkobj.GetOutput()

Note: Writing code for Custom Filter requires knowledge of VTK. Please refer to VTK documentation for class
specific information.

14 Chapter 1. BVTKNodes Addon for Blender

https://vtk.org/doc/nightly/html/


BVTKNodes Documentation, Release 0.5

1.17 Customization of Node Python Code

If an automatically generated node does not provide good functionality, it is possible to override the autogenerated
node code with custom Python code. An example of such a node is vtkThreshold, used for getting points or cells
for which a field value is between a lower and an upper threshold value. The automatically generated code (see
class VTKThreshold in source file gen_VTKFilters1.py) does not support specification of array name, ranges and
data type for thresholding. It is always possible to provide these as Custom Code, but to make the node easier to
use, the code for class VTKThreshold was copied to file VTKFilters.py, modified and commented, and add_class
and TYPENAMES.append commands needed for registering were added. Please feel free to submit such node code
customizations at github issues page!

1.18 Information and Error Messages

Nodes show messages at the UI message box at node top, if any text is available. These messages are used to show in-
formation and also errors for the user. In addition, node is shown in red color if an error is encountered. Unfortunately,
VTK level error messages are not currently captured to this message, so you may need to see debugging messages (see
below) when trying to find out cause for a failure.

1.19 Debug Messages

Please use Info node for viewing pipeline contents.

BVTKNodes additionally uses Python Logging module, which prints out debug messages to the terminal where
Blender is started, but only when Python Logging is configured properly (see Configuring Logging chapter in Logging
from Python code in Blender). These messages may be helpful for debugging purposes. In the simplest case on Linux,
you can create a text file $HOME/.config/blender/{version}/scripts/startup/setup_logging.
py with contents

import logging
logging.basicConfig(format='%(funcName)s: %(message)s', level=logging.DEBUG)

Please check the Development section for more information for developers.

1.20 Other Resources

There are some examples in Blenderartists BVTKNodes gallery discussion thread.

1.21 Help with Issues

You are free to ask and give advice for specific use cases at github issues page. Please check this list first though:

• Read through these docs first, and view examples in Node Examples for Unstructured Grids.

• Run Force Update on the final VTK To Blender Mesh node to update the preceding nodes.

• For time dependent data, try to change frame number in Blender Timeline Editor.

• Check the list of both open and closed issues, in case your problem has been mentioned already.

1.17. Customization of Node Python Code 15

https://github.com/tkeskita/BVtkNodes/issues
https://code.blender.org/2016/05/logging-from-python-code-in-blender/
https://code.blender.org/2016/05/logging-from-python-code-in-blender/
https://blenderartists.org/t/bvtknodes-gallery/1161079
https://github.com/tkeskita/BVtkNodes/issues
https://github.com/tkeskita/BVtkNodes/issues?q=is%3Aissue


BVTKNodes Documentation, Release 0.5

• Check that you use a supported VTK version, see Available Versions of BVTKNodes addon. You can see VTK
version in Blender Python Console (by default located in the Scripting workspace ) with commands

import vtk
vtk.vtkVersion().GetVTKVersion()

• Please provide an image of your node setup with a resolution high enough to read the node contents.

• Please include output of an Info node in an image, so it is clear what data your pipeline contains. Info node can
be attached after a Time Selector node, a Multi Block Leaf node (if you use one), or directly after a data reader
node.

• If possible, please provide a small example data file.

1.22 Special Use Cases

See Node Examples for Unstructured Grids.

16 Chapter 1. BVTKNodes Addon for Blender



CHAPTER 2

Node Examples for Unstructured Grids

Here are listed various node setups used for processing unstructured grid (vtkUnstructuredGrid) data composed of 3D
cells. Examples below utilize the cubeflow OpenFOAM dataset located in examples_data folder of the add-on sources.
This is a very small and simple 5x5x5 hexahedral mesh with 5 time points for testing and debugging purposes.

The node tree examples below are available in Tree tab, Examples, names starting with cubeflow. After importing an
example, change the frame number to 5 in Blender Timeline Editor, if you want to get same results as in examples
below. Then run Update Node on the final nodes to update the pipelines.

For more elaborate visualizations, please have a look at a gallery thread on blenderartists.

17

https://blenderartists.org/t/bvtknodes-gallery/1161079


BVTKNodes Documentation, Release 0.5

2.1 Set Up Reader

This node tree example name is cubeflow_base_boundary. This is a typical start node setup which contains a reader
node vtkOpenFOAMReader to read data, a Time Selector node to specify time, a Multi Block Leaf node to select the
correct data block, an Info node to show the pipeline contents, and finally a VTK To Blender Mesh node to create the
boundary mesh as a Blender mesh object.

Press Update Node button on Info node to update pipeline. If data is read in correctly, the Info node shows number of
points/cells, and fields read in.

18 Chapter 2. Node Examples for Unstructured Grids



BVTKNodes Documentation, Release 0.5

You need to select correct reader node depending on your data type. Note that you may need to adjust reader settings
and/or add Custom Code (see Addition of Custom Code to VTK Nodes) to some readers, depending on your case and
data. For example, to force the parallel OpenFOAM reader vtkPOpenFOAMReader to read the decomposed case files
instead of reconstructed serial case files, you must add custom code SetCaseType(0) to the reader node.

• vtkXMLUnstructuredGridReader for .vtu files

• vtkPolyDataReader for some .vtk files

The following node setups assume that the input of the first node is connected to some data source which produces
vtkUnstructuredGrid with data for 3D cells, such as the output of Multi Block Leaf node in example above.

2.2 Extract Boundary Surfaces

VTK To Blender Mesh node extracts all boundary surfaces.

2.2. Extract Boundary Surfaces 19



BVTKNodes Documentation, Release 0.5

For forks other than tkeskita/bvtknodes you can use vtkGeometryFilter followed by the legacy VTK To Blender node.
Note: This may not produce correct results for polyhedron meshes.

20 Chapter 2. Node Examples for Unstructured Grids

https://github.com/tkeskita/BVtkNodes


BVTKNodes Documentation, Release 0.5

If you want to extract a single boundary patch for OpenFOAM case, you need to

• Add EnableAllPatchArrays() Custom Code to vtkOpenFOAMReader (see Addition of Custom Code to
VTK Nodes).

• Add two Multi Block Leaf nodes in series to select patches and the wanted patch, before connecting to VTK To
Blender Mesh.

• Run Update Node and Force Update Upstream on VTK To Blender Mesh node to make the
EnableAllPatchArrays() work correctly.

This node tree example name is cubeflow_boundary_patch.

2.2. Extract Boundary Surfaces 21



BVTKNodes Documentation, Release 0.5

2.3 Field Data Calculations

You can use vtkArrayCalculator to calculate new fields from existing fields.

• In vtkArrayCalculator node, write the calculator code to Function field, the result array name to ResultAr-
rayName, and select correct type for the AttributeType field. Disable Coordinate Results. Finally you must
specify the array names which are operated on by Custom Code like:

AddVectorArrayName("U")

• See the list of operators in vtkArrayCalculator docs. Some examples for Function field:

– First U vector component can be extracted by expression like U.iHat

– U vector magnitude can be calculated with mag(U)

2.4 Cutting Field Data

Use vtkCutter in combination with a geometry generator (like vtkPlane) to slice your field data. Combine with Color
Mapper and Color Ramp to color by field value. The name of this example node tree is cubeflow_cut_plane.

• Connect vtkPlane to the CutFunction connector on the vtkCutter node.

• Disable GenerateCutScalars and GenerateTriangles in vtkCutter node.

• Connect Color Ramp to the lookuptable connector in the Color Mapper node.

• In the VTK To Blender Mesh node, you must enable Generate Material, so that result colors will be shown after
final Update. Note: 3D Viewport must be in Material Preview or Rendered mode to see the colors.

• Run Update Node on the VTK To Blender Mesh node.

22 Chapter 2. Node Examples for Unstructured Grids

https://vtk.org/doc/nightly/html/classvtkArrayCalculator.html#details


BVTKNodes Documentation, Release 0.5

Here is the result in 3D Viewport shown in Material Preview Mode:

2.4. Cutting Field Data 23



BVTKNodes Documentation, Release 0.5

Note that the Color Ramp now features several color map presets, exported from matplotlib. The number of color
values determine how closely the Color Ramp will match the underlying colormap (up to 32 samples are possible).
Together with constant interpolation mode, this can create a contour-like effect on the surface.

2.5 Vector Glyphs

Glyphs (like one produced by vtkArrowSource) can be placed at points, oriented and scaled by vtkGlyph3D node. This
node tree example named cubeflow_vector_glyphs shows how to color glyphs by velocity magnitude.

• Add vtkCellCenters node to get points of cell centers.

• Add vtkMaskPoints node, and adjust MaximumNumberOfPoints to a small value and set OnRatio to 1 (no
skipping of data points). It is good idea to use a small value for maximum number of points while tuning, so
that calculation does not take a long time.

• Add vtkGlyph3D node, and set ScaleFactor to 0.5, ColorMode to ColorByVector, and ScaleMode to DataS-
calingOff.

24 Chapter 2. Node Examples for Unstructured Grids

https://matplotlib.org/stable/tutorials/colors/colormaps.html


BVTKNodes Documentation, Release 0.5

• Connect vtkArrowSource to input 1, and add Color Mapper, Color Ramp, and VTK To Blender Mesh (with
Generate Material enabled).

• Run Update Node on the final node.

Note: Selecting a vector field to Color By in the Color Mapper node will give wrong results. If vector magnitude is
not generated by a VTK operator (like vtkGlyph3D does here), you can use vtkArrayCalculator upstream to generate
it, see Field Data Calculations.

Note: If the glyphs are all incorrectly aligned along the positive X-axis even when Orient is on, you need to add
vtkAssignAttribute node e.g. before vtkMaskPoints. You need to add Custom Code (see Addition of Custom Code
to VTK Nodes) to specify a data array to be activated, e.g. Assign("U", vtk.vtkDataSetAttributes.
VECTORS, vtk.vtkAssignAttribute.POINT_DATA)

Here is the result in 3D Viewport shown in Material Preview Mode:

2.5. Vector Glyphs 25



BVTKNodes Documentation, Release 0.5

2.6 Contours

Contours can be generated with vtkContourFilter. This example node tree name is cubeflow_contours.

• First add vtkAssignAttribute node and add Custom Code (see Addition of Custom Code to VTK Nodes) to spec-
ify a point data array to be used for contouring, e.g. Assign("p", vtk.vtkDataSetAttributes.
SCALARS, vtk.vtkAssignAttribute.POINT_DATA)

• Add vtkContourFilter, and add wanted contour values: Single Value: 0.017, and Additional Values: 0.02, 0.023.
Disable GenerateTriangles to retain polyhedrons (if wanted).

• Add Color Mapper, Color Ramp and VTK To Blender Mesh nodes. In VTK To Blender Mesh node, select both
Generate Material and Smooth to get smoothened face normals.

• Run Update Node on the final node.

26 Chapter 2. Node Examples for Unstructured Grids



BVTKNodes Documentation, Release 0.5

Here is the result in 3D Viewport shown in Material Preview Mode:

2.6. Contours 27



BVTKNodes Documentation, Release 0.5

2.7 Iso-surface

A closed iso-surface (a contour with no holes in surface, e.g. for volumetric rendering) can be achieved by clip-
ping with a value with this approach using vtkAssignAttribute, vtkClipDataSet, vtkDataSetRegionSurfaceFilter and
vtkPolyDataNormals (to get consistent face normals). The name of this example tree is cubeflow_isosurface.

28 Chapter 2. Node Examples for Unstructured Grids



BVTKNodes Documentation, Release 0.5

Here is the result in 3D Viewport shown in Material Preview Mode:

2.7. Iso-surface 29



BVTKNodes Documentation, Release 0.5

2.8 Stream Tracers

Stream tracers calculated by vtkStreamTracer can be visualized with e.g. vtkTubeFilter using this node tree example,
named cubeflow_stream_tracers.

• Select the vector field for tracing with vtkAssignAttribute.

• Generate source points for stream tracer with e.g. vtkPlaneSource and make sure points are inside the domain.

• Add vtkStreamTracer and modify settings according to your case:

– MaximumNumberOfSteps should be a large value, but during testing phase you can use a small value to
limit result mesh size.

– MaximumError should be a small value like 1e-9 for smooth traces.

– MaximumPropagation limits the length of path, should be a large value.

– MinimumIntegrationStepSize should be a very small value like 1e-10 to avoid early termination.

• Add vtkTubeFilter and adjust at least NumberOfSides and Radius.

• vtkPolyDataNormals (without FlipNormals) is needed to get good face normals for the result.

• Finally add Color Mapper, Color Ramp and VTK To Blender Mesh with Generate Material and Smooth on.

• Run Update Node on final node.

Here is the result in 3D Viewport shown in Material Preview Mode:

30 Chapter 2. Node Examples for Unstructured Grids



BVTKNodes Documentation, Release 0.5

2.9 OpenVDB Export and Volumetric Rendering

Conversion of 3D vtkImageData into OpenVDB (.vdb format) and subsequent volumetric rendering of the Open-
VDB files is possible by using the VTK To OpenVDB Exporter node. This example node tree name is cube-
flow_openvdb_export. A VTKImageData Object Source node is used in conjunction with vtkProbeFilter to convert
the unstructured grid data into vtkImageData (voxel data) required by the OpenVDB format.

Note: Make sure that sampling points in VTKImageData Object Source fall inside the domain at voxel center points.

Note 2: Location, rotation and scale are lost in the OpenVDB export.

2.9. OpenVDB Export and Volumetric Rendering 31



BVTKNodes Documentation, Release 0.5

When the Update Node has been run for the VTK To OpenVDB Exporter node, an intermediate .json file is saved to the
location of the Blender file, which can be converted to .vdb format according to instructions in the node documentation
(see VTK To OpenVDB Exporter). After that, the OpenVDB file can be imported to Blender as a Volume Object.

After importing OpenVDB file(s), you must add a volumetric material to the Volume Object in Blender Shader Editor.
An example material node setup is shown below, with rendering of the result (volume_00005.vdb, viewed from above,
using Eevee render engine), when lit only by a sun lamp with strength value 100. Color is manipulated in the material
by two Vector Math nodes to add red color to velocity X component and blue color to velocity Z component.

32 Chapter 2. Node Examples for Unstructured Grids



BVTKNodes Documentation, Release 0.5

2.9. OpenVDB Export and Volumetric Rendering 33



BVTKNodes Documentation, Release 0.5

34 Chapter 2. Node Examples for Unstructured Grids



CHAPTER 3

Development

BVTKNodes is a community driven open-source project. If you want to develop and improve BVTKNodes for every-
one, please feel free to head over to our current github repository.

3.1 Terminology

• (BVTK) node = a Blender node object in BVTK node tree

• generated node = VTK node which has been automatically generated

• custom node = customized version of a generated node

• VTK node = a generated or a custom node which implements a VTK class

• special node = all other nodes in BVTK node tree

• socket = Blender socket in a node

• VTK object = instance of vtkObject class

• VTK connection = instance of vtkAlgorithmOutput class

3.2 BVTK Core

The tkeskita/bvtknodes version includes a modified core functionality for BVTK Nodes, which allows custom func-
tionality to be plugged in for custom nodes. These can be used by adding special functions to nodes:

• init_special() - special function to run when node is created.

• draw_buttons_special() - special node UI contents.

• init_vtk() - creation and initialization of VTK object.

• apply_inputs() - update input connections to VTK object.

• validate_and_update_values_special() - optional node value validation and update routine.

35

https://producingoss.com/
https://github.com/tkeskita/BVtkNodes
https://github.com/tkeskita/BVtkNodes


BVTKNodes Documentation, Release 0.5

• apply_properties_special() - special function to run for setting properties and update VTK object for special
nodes.

• get_vtk_output_object_special() - special function to provide VTK output object for special nodes.

Please see current custom nodes located in custom_nodes folder in the source for examples.

3.3 Testing Framework

BVTKNodes includes a testing framework (located in the test directory) that should help with checking new updates
and finding bugs.

3.3.1 Executing Tests

• First, make sure that BVTKNodes is correctly installed (see Installation) by running one of the examples located
in the Tree Tab.

• Set environment variable BLENDER_PATH to the Blender executable that you want to test.

• Run python test/test_main.py with a Python environment that has NumPy (and optionally PyVista,
best installed using pip) package installed.

Running the tests should result in an output similar to the following:

........
----------------------------------------------------------------------
Ran 8 tests in 36.380s

OK

Note: Tests can be also run from Blender’s Python environment (see Installation of VTK for Blender).

3.3.2 Writing Tests

BVTKNodes is currently not extensively tested and would benefit from additional tests. Nonetheless, we hope that
new features would include at least one test to check that the features are working as expected.

Typical test applies test_template.blend file which includes an empty node tree, and a JSON file that defines the node
tree. Optionally an additional Python script can be provided to run special commands. If no additional script is
provided, a general test_blender_script.py is called. This script executes the tree once (using the Update All node,
which must be present in the node tree) and checks for any errors. For discussion about testing, please check #57. See
Tree on how to create the JSON file from an existing node tree.

BVTKMainExamples in test_main.py lists all JSON files with their corresponding Python scripts and executes them
as follows:

• Blender is called with flags --python [script] --background --python-exit-code 1 --
-j [JSON file] [additional parameters].

• The Python script is executed. Note that you can use utility functions from test_blender_script.py for parsing
additional parameters and to create the node tree.

• After execution, Blender exits.

36 Chapter 3. Development

https://github.com/tkeskita/BVtkNodes/pull/57


BVTKNodes Documentation, Release 0.5

The test is assumed successful if the return code of Blender is zero. Exceptions in the script, or custom assertions must
return a different return code to indicate failure. It is also possible to provide a small reference data file and compare
test result to it (see the test_glyphs_and_writers test case). Alternatively, you can compare the data directly inside the
script (see the test_global_time_keeper test case). Please try to keep test cases small, effective, and avoid binary files
if possible.

3.3. Testing Framework 37



BVTKNodes Documentation, Release 0.5

38 Chapter 3. Development



CHAPTER 4

What’s New

This information applies to the tkeskita/bvtknodes version.

4.1 Version 0.7 (2021-09-18)

• New node update system, where VTK updates are independent of node editing actions. User has now option
to change Update Mode in the Inspect Panel, which determines when changes in nodes are updated to VTK
objects. Most useful options include No Automatic Updates and Update All Automatically.

• Nodes have now Node Status information, which is shown by node colors.

• Values of dynamic enumeration lists are stored in string properties, so that it is possible to pre-define whole node
trees without need to run updates on nodes. This allows full pre-definition of node trees e.g. for JSON imports.

• Development for this release was made in pull request #46.

4.2 Previous versions

• TBA

39

https://github.com/tkeskita/BVtkNodes
https://github.com/tkeskita/BVtkNodes/pull/46

	BVTKNodes Addon for Blender
	Introduction
	Target Use and Users
	Technical Details and Limitations
	Available Versions of BVTKNodes addon
	Installation of VTK for Blender
	Installation
	Removal and Upgrading
	Workspace Setup
	Simple Example: Human Head Visualization
	Node Status
	Tabs in BVTK Node Editor
	VTK Nodes
	Addition of Custom Code to VTK Nodes
	Customized VTK Nodes
	Special Nodes
	Python Interaction and Custom Filter
	Customization of Node Python Code
	Information and Error Messages
	Debug Messages
	Other Resources
	Help with Issues
	Special Use Cases

	Node Examples for Unstructured Grids
	Set Up Reader
	Extract Boundary Surfaces
	Field Data Calculations
	Cutting Field Data
	Vector Glyphs
	Contours
	Iso-surface
	Stream Tracers
	OpenVDB Export and Volumetric Rendering

	Development
	Terminology
	BVTK Core
	Testing Framework

	What’s New
	Version 0.7 (2021-09-18)
	Previous versions


